Плата Sparkfun Edge, стоимостью 15 долларов США, обеспечивает поддержку Tensorflow Lite для микроконтроллеров

В эти дни проходит TensorFlow Dev Summit 2019, и мы уже рассказывали о выпуске компанией Google платы для разработки Coral Edge TPU и USB-ускорителя с поддержкой TensorFlow Lite, но, во время мероприятия, была представлена еще одна интересная новая разработка – TensorFlow Lite теперь также поддерживается микроконтроллерами (MCU), вместо более мощных прикладных процессоров.

С платой разработки SparkFun Edge на базе Ambiq Micro Apollo3 Blue Bluetooth MCU, чье ультра-эффективное ядро ​​Arm Cortex-M4F может работать с TensorFlow Lite, используя только 6 мкА/МГц, вы легко сможете начать работу с Tensorflow Lite для MCU.

Читать далее «Плата Sparkfun Edge, стоимостью 15 долларов США, обеспечивает поддержку Tensorflow Lite для микроконтроллеров»

Компания Google запустила в продажу USB-ускоритель на базе Edge TPU и плату для разработки

В последние годы было запущено несколько ускорителей нейронных сетей с низким энергопотреблением для ускорения рабочих нагрузок искусственного интеллекта, таких как распознавание объектов и обработки речи. Последние анонсы включают в себя USB-устройства, такие как Intel Neural Compute Stick 2 или Orange Pi AI Stick2801.

Прошлым летом компания Google анонсировала свой собственный ускоритель Edge TPU ML, плату для разработки и USB ускоритель. Хорошая новость заключается в том, что USB-ускоритель, который оснащен Edge TPU и плата для разработки Coral будут запущены в продажу в ближайшие дни, соответственно за $74.99 и $149.99. Читать далее «Компания Google запустила в продажу USB-ускоритель на базе Edge TPU и плату для разработки»

Arm Helium обеспечивает 15-кратное повышение производительности для машинного обучения на микроконтроллерах Cortex-M

Компания Arm представила архитектуру Armv8.1-M, ​​которая добавляет технологию Arm Helium, M-Profile Vector Extension (MVE) для ядер Arm Cortex-M, улучшающая вычислительную производительность микроконтроллеров на базе Cortex-M.

Helium обеспечит в 15 раз более высокую производительность машинного обучения (ML) и до 5 раз повышает эффективность обработки сигналов, позволяя принимать локальные решения на встроенных устройствах с низким энергопотреблением.

Читать далее «Arm Helium обеспечивает 15-кратное повышение производительности для машинного обучения на микроконтроллерах Cortex-M»

Особенности платы для разработки 96Boards AI Sophon Edge с SoC Bitmain BM1880 ASIC

Компания Bitmain специализируется на криптовалюте, блокчейне и искусственном интеллекте (ИИ), теперь она присоединилась к Linaro и анонсировала свою первую платформу 96Boards AI с участием ASIC: плата для разработки Sophon BM1880 Edge, которую также часто называют “Sophon Edge”.

Плата соответствует спецификациям 96Boards CE и включает в себя два Arm ядра Cortex-A53, Bitmain Sophon Edge TPU, который обеспечивает 1 TOPS производительности на 8-бит целочисленных операциях, USB 3.0 и гигабитный Ethernet. Читать далее «Особенности платы для разработки 96Boards AI Sophon Edge с SoC Bitmain BM1880 ASIC»

Алгоритм Bonsai позволяет применять методы машинного обучения на аппаратной платформе Arduino с объемом памяти 2 КБ

Раньше машинное обучение выполнялось в облаке, затем часть полученных выводов перемещалась на граничное устройство, и мы даже видели, что микроконтроллеры способны распознавать изображения с помощью микроконтроллера GAP8 RISC-V .

Но, не так давно мы столкнулись с техническим документом «Ресурсоэффективное машинное обучение на устройствах с 2 КБ оперативной памяти для Интернета вещей», в котором показано, как можно выполнять такие задачи с очень небольшим количеством ресурсов.

Читать далее «Алгоритм Bonsai позволяет применять методы машинного обучения на аппаратной платформе Arduino с объемом памяти 2 КБ»

Особенностью платы Kendryte KD233, стоимостью 50$, стал двухядерный процессор K210 RISC-V

RISC-V говорит о многом. Нам встречалось несколько плат разработки, выходящих на рынок, или, по крайней мере, анонсированных, на базе процессоров SiFive. Это такие платы как HiFive Unleashed или Arduino Cinque , а также другие, подобные GAPUINO GAP8, для приложений с малой потребляемой мощностью. Плата Arduino еще не продается, а HiFive Unleashed и GAPUINO GAP8 довольно дороги в цене 999 долларов и 229 долларов, соответственно.

Плата Kendryte KD233 – еще одна плата для разработки на базе архитектуры RISC-V, основанная на двухъядерном 64-разрядном процессоре RISC-V Kendryte K210, предназначенном для машинного зрения и «машинного слуха». Плата предлагается на AnalogLamb за 49.99$.

Читать далее «Особенностью платы Kendryte KD233, стоимостью 50$, стал двухядерный процессор K210 RISC-V»

Компания NXP представила кроссовер-процессор i.MX RT600 серии Arm Cortex-M33 + аудио DSP

Чуть более года назад компания NXP представила свой первый кроссовер-процессор NXP i.MX RT1050, основанный на ядре Cortex-M7 с тактовой частотой до 700 МГц, который стирает грань между возможностями микроконтроллеров в реальном времени и высокой производительностью в применениях процессора.

И теперь компания анонсировала еще одну модель с меньшим энергопотреблением. Серия NXP i.MX RT600 поставляется с ядром Cortex M33 с тактовой частотой до 300 МГц, аудио DSP Cadence Tensilica HiFi 4 и до 4.5 Мб SRAM. Читать далее «Компания NXP представила кроссовер-процессор i.MX RT600 серии Arm Cortex-M33 + аудио DSP»

На Kickstarter запущена видеокамера машинного зрения OpenMV Cam H7 MicroPython

Команда OpenMV запустила обновление своей популярной камеры OpenMV CAM M7, в OpenMV CAM H7 заменен микроконтроллер STMicro STM32F7 более мощным MCM STM32H7 с тактовой частотой до 400 МГц.

Помимо удвоенной вычислительной мощности, новая плата камеры также оснащена съемными модулями камеры для “теплового” зрения и поддержки глобального затвора.

Читать далее «На Kickstarter запущена видеокамера машинного зрения OpenMV Cam H7 MicroPython»